
0T7 FILE COPI

00Co

0

JNMACS-TR-88-15 February. 1988
"S-TR-1991

. Scheduling Tasks in a Real-Time Systemt

Prasad R. Chintamaneni and Xiaoping Yuan
Department of Computer Science

Satish K. Tripathi and Ashok K. Agrawala+g
Department of Computer Science and

-Institute for Advanced Computer Studies
University of Maryland

Colege Park, MD 20742

AU,

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

DTIC
S"ELECTE

AUG 0 4 1988

H0
UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND

20742

DISTIDTJ '.,ON " TAT.d T A'

Approved for pabWn mmA 8 04 .036
DhflbuionUnlimited

'r ~ % wr h

,U

I

UMIACS-TR-88-15 February, 1988
CS-TR-1991

Scheduling Tasks in a Real-Time Systemt

Prasad R. Chintamaneni and Xiaoping Yuan
Department of Computer Science

Satish K. Tripathi and Ashok K. Agrawalajg
Department of Computer Science and

Institute for Advanced Computer Studies
University of Maryland D TIC

College Park, MD 20742 s E L E C,' T E

AUG o 41988ic"k

ABSTRACT H

A heuristic technique for dynamically scheduling tasks in a real-time system is
described in this paper. Each task is defined by a being time, a deadline and a re-
quired computation time. The scheduling problem is to schedule every task success-
fully, i.e., each task should start after its begin time and complete its execution before
its deadline. Two characteristics distinguish our task model and heuristic technique:
First, a new task to be scheduled is allowed to modify a previous, partial schedule that
is already feasible. Thus, the heuristic technique can be used either to build a feasible
schedule from scratch or extend a partial, feasible schedule. Second, each task is
bounded by a window of time defined by the begin and end time. The begin time is
typically equal to or grater than the task arrival time. The end time is typically equal
to or less than the task deadline. The additional constraint of starting a task after
specified time instant is useful in task synchronization. Comparisons with known
heuristic techniques for dynamically scheduling tasks in a real-time system are made
via simulation. The results show that the proposed approach has a higher degree of
success in obtaining a feasible schedule compared to the other approaches.

t This work is supported in part by contract No. N00014-87-K-0241 from the Office of Naval Research to the Departmcnt of
Computer Science, University of Maryland at College Park.

tg The authors would like to acknowledge the comments of Nan Muckenhim on the writeup of this paper.

....-.,A -ri "v -. .f A.

App t +j1

Scheduling Tasks in a Real-Time System1

Prasad R Chintamaneni, Xiaoping Yuan, Satish K Tripathi, and Ashok K Agrawalae

Department of Computer Science and
Institute for Advanced Computer Studies,

University of Maryland,
College Park, MD 20742.

Abstract

A heuristic technique for dynamically scheduling tasks in a real-time system is described in
this paper. Each task is defined by a begin time, a deadline and a required computation time.
The scheduling problem is to schedule every task successfully, i.e., each task should start after its
begin time and complete its execution before its deadline. Two characteristics distinguish our
task model and heuristic technique: First, a new task to be scheduled is allowed to modify a pre-
vious, partial schedule that is already feasible. Thus, the heuristic technique can be used either to
build a feasible schedule from scratch or extend a partial, feasible schedule. Second, each task is
bounded by a wizdow of time defined by the begin and end times. The begin time is typically
equal to or greater than the task arrival time. The end time is typically equal to or less than the
task deadline. Tht: additional constraint of starting a task after specified time instant is useful in
task synchronization. Comparisons with known heuristic techniques for dynamically scheduling
tasks in a real-time system are made via simulation. The results show that the proposed
approach has a higher degree of success in obtaining a feasible schedule compared to the other
approaches.

1. Introduction

Process control, manufacturing systems, and nuclear power plants are some examples of

applications involving distributed, real-time tasks. The real-time constraints in these applications

are hard in that the tasks have to meet their execution deadlines. Satisfying the time require-

ments of the tasks in a system motivates the need for proper scheduling of system resources so

that the timing behavior of the system is predictable and maintainnhle

Different scheduling algorithms make different assumptions about the set of resources and

the set of tasks in the system. For example, a static version of the scheduling problem involves on For

the assumption of complete and prior knowledge of the task sets. Specifically, the arrival times, -

the deadlines, the worst-case computation times, the inter-task precedence constraints and the '7

'This work was supported in part by contract N00014-87-K-0241 from the Office or Naval Research to the Depart-
ment of Computer Science, University of Maryland, College Park, NIl) 20842. t I

t c/2The authors would like to acknowledge the comments of Nan Muckenhirn on the writeup or this paper. -I I -

.Avil x-, .i' x ;
D is t Speclal

.....

2

resource requirements of each task are assumed to be known. In general, incorporating this infor-

mation in scheduling is costly and inflexible. Moreover, the assumption of complete and prior

knowledge, which implies a closed system, is questionable in actual practice. Another version of

the scheduling problem involves the assumption that the tasks are typically compute bound.

Specifically, the epu is the only resource of contention considered at each node of the distributed

system. All other resources are assumed to be contention-free. This assumption is not true of all

real-time systems. In this paper, we address the question of scheduling for loosely coupled distri-

buted systems where prior and complete knowledge of the task sets is not required and all system

resources are likely candidates for contention.

We base our approach to scheduling in a loosely coupled distributed system on the one pro-

posed in [14][16][18]. In this approach, each node of the distributed system contains a local

scheduler, bidder and dispatcher. A task arrival at a node results in the invocation of the local

scheduler. The job of the local scheduler is to decide whether the task can be guaranteed at the

node locally. A guaranteed task is ensured to satisfy its time and resource constraints. In the

event a task cannot be guaranteed locally, it is either terminated or sent to another node. The

decision on where to send a non-terminated task is based on a bidding scheme[21. Each bidder is

responsible for: 1) sending out bids in response to requests from other nodes, 2) sending out

requests for bids for a task that cannot be guaranteed locally, 3) evaluating bids from other nodes

sent in response to requests from the local node, and 4) sending tasks that cannot be guaranteed

locally to the best bidder. The actual scheduling of the guaranteed tasks at a node is performed

by the local dispatcher. This approach to scheduling tasks in a real-time distributed system is

flexible and maintainable. In this paper we assume the existence of, and use the functionality

provided by, the local bidder and dispatcher. We concentrate on improving the behavior of the

local scheduler and propose a heuristic scheduling technique towards this end.

The organization of the paper is as follows. Section 2 contains a brief review of the previous

work related to this problem. The applicability of a specific scheduling technique depends on the

model used to describe a task in a system. In section 3, we specify the task model us,.,l IY our

scheduler. The usefulness of a scheduling technique is determined by its ability (- w, Ct to

I
d

y -- ,-

3

changes in system workload. Specifically, the algorithm must be applicable to scheduling on-line, * 1

batch, and periodic tasks. In section 4, we describe our heuristic scheduling technique and discuss

its applicability. A simulation study comparing our scheduling technique with several others is

presented in section 5. It is shown that our technique performs better than the others considered.

While the optimality of a scheduling algorithm is important, the complexity of the algorithm is

also an important aspect in real-time scheduling. Section 6 includes an analysis of the complexity

and optimality of all the scheduling techniques considered in section 5. Our conclusions are sum-

marized in section 7.

2. Previous Work

Real-time scheduling research dates back to the early 1970's. A deadline-driven algorithm

for two processors is given in [31, and the authors introduced the concept of modified deadlines by

taking the precedence relation among the tasks into consideration. They proved that the problem

of minimizing the number of deadline-missing tasks is NP-complete. Liu and Layland [8[

developed an optimal, static, priority-driven scheduling algorithm that attained the upper bound

of processor utilization for a periodic task set. They also showed that full processor utilization

could be obtained by using a dynamic prio-ity assignment, such as the earliest-deadline-first algo-

rithm. Variations of the deadline driven scheduling algorithms are found in [4, 11, 15[. Several

authors [11, 12, 151 have proposed data-driven graph models for real-time scheduling. A branch

and bound algorithm applied to allocate resources and to schedule tasks in a multiple processor

system is discussed in [9]. Scheduling algorithms dealing with the guaranteed response times of

tasks in a local processor or in a distributed real-time environment are discussed in [5, 6, 171.

Task clustering scheduling algorithms, intended to reduce scheduling and communication over-

heads by clustering related tasks together, have been studied in [1, 2[. A variety of heuristics in

scheduling, incorporating multiple resource requirements, preemptions and sharing, have been stu-

died in [16, 18, 191. Scheduling strategies for handling both periodic and aperiodic tasks are dis-

cussed in [7[.

)k

4

3. System and Task Model

Let R be the set for resources of the entire distributed system: R {R 1, R 2 ... , R, }.

Each none in the system is considered to have a single instance of one or more of the resources in

R. The set of resources is partitioned into two groups: active resources and passive resources.

Every task in the system has to use at least one active and one passive resource for its computa-

tion. A passive resource can be used either in exclusive mode or shared mode. The former refers

to exclusive access and the latter refers to shared access of the specific, passive resource. We

denote a resource i as Ri if it is active, R,' if it is passive, and B,' if it is passive and shared.

Each task T in the system is defined by a time constraint, TC,: TCQ - {B,, C, Di ". 3,

indicates the begin time of the task. Typically, it is equal to or greater than the arrival time of

the task. In this paper, we assume that the begin time of a task is to its arrival time. C.

specifies the task computation time and D, specifies the task end time (Without loss of generality,

we assume the end time of a task is equal to its deadline time). For successful scheduling, the

task has to start execution after Bi and complete execution before Di.

Additionally, each task T, is associated with a resource requirement RR,: RR c R. As

mentioned earlier, for every task the resource requirement must include at least one active

resource and one passive resource. Passive resources can be used in shared or exclusive modes.

4. The Scheduling Algorithm

The different data structures used by the algorithm are described in section 4.1. In section

4.2 the scheduling algorithm is described and in section 4.3 the applicability of the algorithm is

discussed.

4.1. Data Structures

4.1.1. Earliest Available Times

A doubly linked list of structures named EAT to indicate the earliest available times of

resources is maintained. Each EAT structure in the linked list corresponds to a successfully

scheduled task in the system, and is defined as a vector:

EATI = (EATit, EAT, 2, .. ., EATj,)

The jtA EAT structure in the linked list, EATj, defines the earliest times each resource in the

system becomes available, subject to the constraint that all the tasks 1 through j in the linked list

are successfully scheduled. Specifically EAT,, is the earliest time when resource R; will become

available, after all the tasks 1 through j in the linked list are successfully scheduled. Each time

the partial schedule is extended, one or more EAT structures will be updated taking into account

the new task's resource requirements, completion time and inserted position in the schedule. '" V

Example: Assume that we have six active resources R 1 , R2 .. , R e. Consider the problem

of scheduling three tasks with the folloving descriptions:

TI: TC -I {0, 10, 12} RR I - {R 2, R3, Rr}.

T2: TC-2 -{0, 20, 40) RR 2 - {R 1 , R 2, R 6}.

T3: TO3 - {10, 9, 20) RR,3 = {R 2, Rs, R .

After the first task is included in the schedule, the corresponding EAT structure is:

EAT, -(EAT,,, EAT 1 2, EAT 13, EAT 14, EAT 15 , EATIO) = (0, 10, 10, 0, 10, 0). 0

The earliest time resources R2, R and R , will be available for other tasks is 10 time units. All

the remaining resources are free for use from time 0.

For all subsequent tasks (j > 1), the earliest starting time, ESTj, of a specific task, 7", is given

by

EST = MAX(EAT(, 1 j)j)

for all i (i-1,2 ...,r) satisfying the condition that R is required by Ti..

The task can be successfully scheduled if

MAX(Bj, EST) + C <= D .

The corresponding EAT structure is defined by

EATi, ==EAT(i_.) if R is not required by T, and,

EATJ, . NMAX(Bi, EST.) + C if R is required by T.

Thus, if the second task is scheduled next, the corresponding EAT would be

EAT 2 -(30, 30, 10, 0, 10, 30).

6

The third task cannot be scheduled at the end of the partial schedule, since the deadline con-

straint will be violated. It can, however, be inserted between the first two tasks in the linked list.

In that case, the EAT linked list will be as follows:

EAT, = (0, 10, 10, 0, 10, 0),

EAT 2 (0, 19, 19, 19, 10, 0),

EAT 3 = (39, 39, 19, 19, 10, 39).

The earliest starting times of the three tasks in the linked list are therefore EST,= 0, EST 2

10, and EST 3 = 19.

4.1.2. Latest Needed Times

A doubly linked list of structures named LNT to indicate the latest needed times of

resources is also maintained by the algorithm. Each LNT structure in the linked list corresponds

to a successfully scheduled task in the system, and is defined as a vector:

LNTj = (LNTj 1 , LNTj 2 , . .. , LNTi,)

The ju' LNT structure in the linked list, LNTi, defines the latest time all the resources are

needed to satisfy the constraint of successfully scheduling the tasks i through n in the linked list,

where n corresponds to the last task in the linked list of scheduled tasks. Specifically, LNTi, is

the latest time when resource R is needed, subject to the constraint that all tasks i through n in

the linked list can be successfully scheduled. Each time a partial schedule is extended, one -

more LNT structures will be updated taking into account the new task's resource requirements,

completion time, and inserted position in the schedule.

Consider the same example as before. The last task on the linked list has a single constraint

to satisfy, i.e., it should complete before its deadline. If a resource is used by this task, the latest

time it is needel is equal to the difference of its deadline time and its computation time. If a

resource is not used by this task, the latest time it is needed is effectively infinity. Thus LNT 3 is

given by

LNT3 -(20, 20, oo, 20, oo, 20).

All other tasks in the list have to satisfy two constraints, i.e., they should complete before their

7

deadlines and they should not violate the schedulability of the tasks succeeding them in the list.

For all tasks (j < n), the latest possible time a specific task can be completed, LFT , is given by ID

LFTj = MIN(LNT(,+!,,),

for all i (i 1 , r), provided R, is used by T7. ,.

The corresponding LNT structure is defined by
O

LNT, = LNTu ,l) if R, is not used by T and,

LNTj, = MIN(D,, LFT)- C if R i is used by T i .

Specifically, the LNT linked list in the example will be as follows:

LNT 3 = (20, 20, o, 20, oo, 20),

LNT 2 =(20, 11, 11, 11, oo, 20),

LNT, =(20, 1, 1, I1, 1, 20).

The latest starting time of a task, LSTj, is thus equal to the latest finish time of the task preced- S

ing it.

LSTj - LFT(Ui).

The latest starting times of the three tasks in the linked list are LST - I, LST 2 = 11, and 5

LST 3 = 20.

4.1.3. Task Information %

The algorithm maintains a doubly linked list of structures named TASK to hold information

about the tasks scheduled in the system. Each TASK structure in the linked list corresponds to a

successfully scheduled task in the system, and is defined as a vector:

T7SKy = (By, C. , Di , S , F),

where By is the begin time (typically the arrival time), Cy the computation time, Di the (lead- -.

line. Si the start time, and Fy the finish time of the j'h task in the linked list. There is a one-

to-one correspondence between the three linked lists maintained by the scheduler.

N N.

e 0- C ff5 I

8

4.2. Algorithm description

We employ a simple strategy, compress and insert, to determine the schedulability of a task

at a node. The basic idea is to determine if a new task can be inserted at any position in the par-

tial, feasible schedule so that the feasibility of the previous schedule is retained. This differs from

the majority of the previous approaches in determining whether a new task can be added to the

end of the partial, feasible schedule so that the resulting schedule is still feasible.

The data structures described in the previous section are used by the heuristic described

below. Given a task T {i.e., its time constraint and resource requirement} and a partial, feasible

schedule the heuristic, in its simplest forn, attempts to schedule T as follows: -

1. Compress the list of tasks already scheduled. The effect of task compression is to determine

the earliest time each task in the list can start execution. The procedure works from the

beginning of the list of scheduled tasks towards the end of the list, updating EAT.

Specifically, EAT will yield the earliest times each of the resources will be free, after the

tasks 1 through i are successfully scheduled.

2. Expand the list of tasks already scheduled. The effect of task expansion is to determine the

latest time each task in the list can start execution. The procedure works from the end of

the list of scheduled tasks towards the beginning of the list, updating LNT. Specifically,

LNT will yield the latest times each of the resources will be needed, so that the tasks i

thougl, the end of the list can be successfully scheduled.

3. Check if T can be inserted at each possible position in the list of scheduled tasks. With n

tasks in die partial schedule, there aie n+l po-s;ble positions for T. Specifically, T can be

inserted in the list at position i if the window of time defined by EAT(j_1 } and LNT is large

enough to satisfy its time constraints and resource requirements. The procedure works back-

wards through the list of scheduled tasks to the beginning of the list. The threc linked lists

are updated in the event of an insertion. A failure is returned otherwise.

The pseudo code fc-r the proposed algorithm is given in Fig. 1.

el

Y-p

%d ~ -A~ P%4 %~ %'A.~ . - \'-%uv'~~PP ~% N"

Sche.,-,e(task, task list, eat lit, lntjist)
i*., : TASK *task /* Task to be scheduled */

itruct TASK *task-list ; /* List of tasks already scheduled */
struct EAT *eat list /* EAT structures corresponding to task list */
struct LNT *lnt-list /* LNT structures corresponding to task list */{

/* Find the earliest starting times of all the
tasks already scheduled */

Compress(EAT List);

/* Check if the new task can be inserted at the end
of the partial schedule */

If (Insertable(task, end of eat list + 1)){
Insert (task, end of eat list + 1, eat-list, tasklist, Intlist)
return (SUCCESS)I

/* Check if the task can be inserted at each internal
slot in the partial schedule. Start from the end */
for (j - end ofInt list ;j >= 0 ;j-){

expand (lntjlist, j) ; /* expand j'A task */
If (Insertable(task, j)){

Insert(TASK, j, eat list, task-list, Int list)
return (SUCCESS);}

}

/* Task cannot be inserted at any position */
return (FAILURE)

}Figure 1: Pseudo Code: Compress and Insert Heuristic.

Given a task to be scheduled, the algorithm in Figure 1 is the simplest implementation of

the heuristic. In the worst case, two passes are made through the list of scheduled tasks: one for

compressing and the other for expanding. However, notice that whenever a task is inserted at

position j, all the tasks from 1 through j are already compressed and all the tasks from j+1

through the end of the schedule are already expanded. With two pointers, in the average case,

one pass through the list of scheduled tasks is suffici-ot *o -chedule a new task.

%%.?

10

4.3. Algorithm Applicability

Typical categories of tasks in a real-time, distributed system include sporadic tasks, periodic

tasks, task sets with precedence constraints and task sets characterized by bulk arrivals.

Sporadic tasks are characterized by one-shot executions. Periodic tasks are characterized by

repeated executions with a pre-determined time interval between any two executions. Tasks with

precedence constraints impose additional temporal constraints on the order of task execution.

Bulk arrivals specify a group of tasks arriving at a node at the same time.

The compress and insert algorithm is applicable in the cases of tasks that arrive either

sporadical!y or in bulk. Given a set of tasks to be scheduled, the algorithm determines the

scheduling of tasks one at a time. The algorithm makes no distinction between building a

schedule from scratch or extending a partial, feasible schedule.

The algorithm is also applicable in scheduling task sets with precedence constraints. Notice

that the scheduling not only guarantees that a task completes execution before its deadline, but

also guarantees that it starts execution after its begin time. The basic strategy in scheduling

tasks with precedence constraints is to identify or fix the begin times of the individual subtasks in

the precedence set. The individual subtasks can then be scheduled by the algorithm indepen-

dently, and the precedence constraints are still not violated. To handle periodic tasks, the

scheduling of each instance of the periodic task needs to be followed by the inclusion of a new,

succeeding instance of the task in the list of unscheduled tasks. We are in the process of includ-

ing these features in the testbed.

5. Simulation Results and Observations

Ten different heuristics were chosen for comparison. Each heuristic tested the schedulability

of a specific task by checking that the task could start after its begin time and complete its execu-

tion before its deadline, subject to satisfying its resource constraints. If all the tasks in a given ',

set are schedulable, the heuristic is said to yield a feasible schedule. A brief description of each of

the heuristics is given below:

% e '
or q % % A*

J~b '? -

S11

[HIJ Earliest Deadline: Given a set of tasks to be scheduled, the algorithm selects the

task with the earliest deadline to be added to the end of the partial, feasible schedule.

[H2] Least Laxity: Given a set of tasks to be scheduled, the algorithm selects the task

with the least laxity to be added to the end of the partial, feasible schedule.

[H3] Sorted Earliest Deadline: Given a set of tasks to be scheduled, the algorithm selects

the task with the earliest begin time to be added to the end of the partial, feasible

schedule. If there is more than one such task, the one with the earliest deadline is

chosen.

[H41 Sorted Least Laxity: Given a set of tasks to be scheduled, the algorithm selects the

task with the earliest begin time to be added to the end of the partial, feasible

schedule. If there is more than one such task, the one with the least laxity is chosen.

[H5[Compress and Insert: Given a set of tasks to be scheduled, the algorithm selects a

random task to be inserted in the partial, feasible schedule, according to the heuristic

described in the previous section.

[H6[Compress and Insert + Deadline: Given a set of tasks to be scheduled, tile algo-t

rithm selects the task with the earliest deadline to be inserted in the partial, feasible

schedule, according to the heuristic described in the previous section.

-[H7[Compress and Insert + Laxity: Given a set of tasks to be scheduled, the algorithm

selects the task with the least laxity to be inserted in the partial, feasible schedule,

according to the heuristic described in the previous section.

[HS] Umass: Given a set of tasks to be scheduled, the algorithm selects a task heuristically

(see [21 for details of the heuristic function employed) to be added to the end of the

partial, feasible schedule.

(l-19 Compress and Insert + Sorted Laxity: Given a set of tasks to be scheduled, the

algorithm selects he task with the earliest begin time to be inserted in the partil,

feasible schedule, according to the heuristic described in the previous section. If there

11 .k'

12

is more than one such task, the one with the least laxity is selected.

[H10 Cornpress and Insert + Sorted Deadline: Given a set of tasks to be scheduled,

the algorithm selects the task with the earliest begin time to be inserted in the partial,

feasible schedule, according to the heuristic described in the previous section. If there

is more than one such task, the one with the earliest deadline is selected.

A task generator was built to generate a feasible schedule of a set of tasks for a given sys-

tem configuration (i.e., number of active and passive resources). The parameters of the task gen-

erator include the number of tasks in the task set, the number of active resources in the system,

and the number of passive resources in the system. Additional control parameters specified

whether sharing of resources was allowed or prohibited, and whether the arrival times of the tasks

were zero (begin times = 0 implies bulk arrivals) or whether the task arrival times were non-zero

(i.e., sporadic arrivals). Task-specific parameters in the generator included the minimum compu-

tation time, the maximum computation time, the maximum laxity, and a control parameter, c.

Each task generated had a computation time that was a random variable drawn from a uniform

distribution bounded by the minimum and maximum computation times.

The laxity of a task is defined as the difference between the deadline time of the task and

the sum of the task arrival time and computation time. (i.e., laxity D, - Bt - Ct .) Each task

generated had a laxity that was a random variable drawn from a uniform distribution bounded by

zero and the maximum laxity. Tasks with arrival time zero however had an effective laxity

greater than the value of the specified laxity parameter. The control parameter, c %, defines the

ratio between the begin-laxity and the end-laxity. The begin-laxity is defined as the difference

between the task start time and the task begin time in the feasible schedule generated by the task

generator. The end-laxity is defined as the difference between the task deadline time and the task

finish time in the feasible schedule generated by the task generator.

Fo, +.e simulations, 100 task sets were generated for each experiment. Each task set was

comprised of 10 tasks. Three factors were chosen for experimentation: the number of resources in"

the system, tli maximum laxity of the tasks in the task set, and, cp, the ratio between the begin-

%p

13 &

laxity and the end-laxity of the tasks in the system.

For each factor, four different sets of experiments were conducted:

[1] NS, ATZ: No sharing of resources and arrival times of tasks zero.

[2] S, ATZ: Sharing of resources allowed and arrival times of tasks zero.

3
[31 NS, ATNZ: No sharing of resources and arrival times of tasks non-zero.

14) S, ATNZ: Sharing of resources alowed and arrival times of tasks non-zero.

The baseline parameters for the task generator were:

Number of Active Resources :2
Number of Passive Resources : 4

Minimum Computation Time : 1
Maximum Computation Time 10
Maximum Laxity : 20
Control Parameter : 0.5 0

The simulation results are presented in Tables 1.1 - 3.4. The results show the percentages

of task sets for which feasible schedules were found by each heuristic.

Res HI H2 H3 H4 H5 H6 H7 H8 H9 HI0
(2,4) 90 87 90 87 39 96 97 97 97 96
(3,5) 89 79 89 79 48 98 97 95 97 98
(4,6) 88 83 88 83 53 97 100 95 100 97 A,
(5,7) 87 78 87 78 53 97 98 91 98 97
(6,8) 50 78 50 78 54 95 97 88 97 95___-

Table 1.1: Variation of the number of resources, NS, ATZ

Res Hi 112 H3 H4 H5 16 H7 H8 H19 1-110
(2,4) 88 84 88 84 36 96 98 95 98 96
(3,5) 87 82 87 82 58 95 96 94 96 95
(4,6) 90 79 90 79 65 97 98 94 98 97
(5,7) 89 88 89 88 66 97 100 94 100 97
(6,8) 89 78 89 78 61 98 95 88 95 98

Table 1.2: Variation of the number of resources, S, ATZ

Ira

14

Res Hi H2 H3 H4 H5 H6 H7 H8 H9 HIO

(2,4) 18 0 44 44 53 52 62 74 94 95
(3,5) 20 0 46 45 52 55 64 64 96 95
(4,6) 24 0 38 40 59 59 65 65 93 89
(5,7) 33 0 44 42 75 75 66 74 90 91
(6,8) 32 0 50 50 46 76 63 70 97 97

Table 1.3: Variation of the number of resources, NS, ATNZ

Res HI H2 H3 H4 H5 H6 H7 H8 H9 H10

(3,5) 0 41 41 67 47 67 24 66 89 85
(4,6) 0 48 47 66 50 66 30 58 88 88
(5,7) 0 49 49 65 50 61 22 55 95 94
(6,8) 1 63 62 68 50 61 25 61 91 90

Table 1.4: Variation of the number of resources, S, ATNZ

Lax HI H2 H3 H4 H5 H6 H7 H8 HO HIO
3 96 83 96 83 11 98 100 38 100 98
6 81 69 81 69 12 90 97 60 97 90
9 79 59 79 59 16 89 97 71 97 89

12 80 67 80 67 23 91 93 79 93 91
15 85 75 85 75 32 95 99 96 99 95
18 89 83 89 83 39 98 99 95 99 98
25 97 89 97 89 151 100 99 97 99 100

Table 2.1: Variation of Laxity, NS, ATZ

Lax HI11 H2 113 H4 H5 116 H7 H8 H9 H10

3 92 79 92 79 14 95 100 38 100 95
6 87 72 87 72 14 93 98 61 98 93
9 80 59 80 59 22 90 96 78 96 90
12 84 60 84 60 26 93 96 86 96 93
15 86 69 86 69 31 97 96 91 96 97
18 87 80 87 80 33 97 97 95 97 97
25 95 80 95 80 49 99 100 96 100 99

Table 2.2: Variation of Laxity, S, ATZ

Lax HI H2 H3 H4 H5 H6 H7 H8 H9 H10
3 85 0 99 98 65 99 61 91 99 99
6 62 0 88 89 63 94 63 90 99 98
9 45 0 74 74 62 79 63 79 98 98

12 28 0 62 61 55 73 61 75 97 97
15 26 0 54 51 55 68 65 69 95 96
18 25 0 45 45 53 63 62 69 95 96
25 20 0 32 32 50 60 63 63 85 90

Table 2.3: Variation of Laxity, NS, ATNZ

Lax HI H2 H3 H4 H5 H6 H7 H8 H9 H10

3 78 0 99 96 60 97 63 79 99 99
6 63 0 89 84 57 96 69 72 98 98
9 40 0 77 70 53 82 65 72 96 97

12 30 0 68 65 45 71 62 68 95 95
15 30 0 53 53 41 63 56 61 96 93
18 26 0 45 44 40 53 59 55 96 95
25 28 0 28 28 43 63 66 64 95 92

Table 2.4: Variation of Laxity, S, ATNZ

c. HI H2 H3 H4 H5 H6 H7 IH8 H9 HIO
0.1 90 87 90 87 39 96 97 97 97 96

Table 3.1: Variation of cp, NS, ATZ

C. FH1 H2 I H3 I H4 I H5 IH6 I H7 I H8 H9 I1-lio
10.1 188 184 188 1 84 1 36 196 9 I8 1 95 9 8 1

Table 3.2: Variation of ep, S, ATZ

16

% HI H2 H3 H4 H5 H6 H7 H8 H9 H10
0.1 16 0 97 97 60 63 68 71 99 99
0.2 18 0 82 81 60 60 66 64 99 99
0.3 16 0 64 63 59 58 66 63 96 97
0.4 14 0 51 51 59 53 63 68 94 95
0.5 18 0 44 44 53 52 62 74 94 95
0.6 20 0 28 28 50 59 i5 64 94 96
0.7 21 0 16 16 41 64 54 66 88 90
0.8 28 0 14 14 39 68 57 50 86 88
0.9 28 0 12 11 36 68 54 48 80 82

Table 3.3: Variation of c, NS, ATNZ

c, Hi H2 H3 H4 H5 H6 H7 H8 H9 H10
0.1 25 0 96 95 47 60 67 64 98 98
0.2 25 0 85 84 46 64 67 68 98 98
0.3 25 0 60 65 49 59 65 60 98 97
0.4 25 0 51 50 46 56 63 60 97 95
0.5 23 0 43 41 44 57 61 56 94 93
0.6 31 0 22 22 37 60 55 50 91 88
0.7 27 0 16 15 31 58 50 48 85 85
0.8 30 0 10 9 23 61 57 38 81 80
0.9 35 0 10 8 27 70 54 32 j 78 76

Table 3.4: Variation of c., S, ATNZ

Tables 1.1 - 1.4 present the percentages of feasible schedules found by each of the ten

heuristics, when the number of resources in the system was varied. The column entry for the

number of resources is written as (a, 6) where a denotes the number of active resources in the sys-

tem and b denotes the number of passive resources in the system. Tables 2.1 - 2.4 present the

percentages of feasible schedules found by each of the ten heuristics, when the laxity is varied. In

the experiments with tasks having a non-zero arrival time, the laxity parameter specifies the max-

imum difference between the task deadline and the sum of the task begin time and task computa-

tion time (i.e., laxity = Dt - B, - C,). In the experiments with tasks having an arrival time

equal to zero, the laxity parameter specifies the maximum end-laxity of the tasks in the generated

schedule by the task generator. The effective laxity in these experiments could therefore be

greater than the specified laxity parameter. Tables 3.1 - 3.4 present the percentages of feasible

-IA

17

schedules found by each of the ten heuristics, when the control parameter cp is varied. Since cp

is the ratio between the task begin-laxity and the task end-laxity, it can only be varied for tasks

with non-zero arrival times.

The following observations can be made from the different experiments conducted:

[a] Heuristics H9 and H10 perform consistently better than all the others considered.

[b] The sorted version of a heuristic performs better than its unsorted counterpart (e.g., H3 is

better than HI, H4 is better than H2, H9 is better than H7, and H10 is better than H6.)

[ci All heuristics behave better with a zero arrival time than with a non-zero arrival time, as the

number of resources in the system varies. The reason, as mentioned earlier, is that the

effective laxity with a zero arrival time is much greater than with a non-zero arrival time.

The heuristics have a better performance with a non-zero arrival time for low values of lax-

ity. With high values of laxity, however, the trend reverses.

[d] The performance of the heuristics shows no consistent and significant patterns of behavior

when experiments with sharing are compared to experiments with no sharing.

[e) The performance of the heuristics shows no consistent and significant patterns of behavior

when the number of resources are changed in the system.

[f] The performance of the heuristics varies with laxity. The maximum baseline task computa-

tion time in these experiments was 10 time units. All the heuristics display a certain mono-

tonic behavior till the maximum laxity equals the maximum computation time. They show a

different monotonic behavior for values of maximum laxity greater than the maximum com-

putation time. As expected, the ratio of the maximum computation time and maximum lax-

ity is an important characterization of a real-time workload.

[g) The performance of the heuristics with the variation of cp shows a declining trend behavior.

Many of the heuristics are based on the task arrival time for selecting the next task to be

scheduled. As the control parameter is increased, the front laxity is increased, reducing the

importance of task arrival time. This explains why the heuristics perform worse with increas-

] /4

18

ing values of c.

[h] When the arrival times of the tasks equal zero, the sorted and unsorted versions of all the

heuristics yield the same results (i.e., HI = H3, H2 = H4, H7 = H9, H6 = HIO.)

6. Cornplexity Analysis

There is arn obvious tradeoff between the performancc of a scheduling algorithm and its

complexity. The complexities of heuristics considered in the previous section are discussed below.

The earliest deadline (least laxity) algorithm selects the task with the closest deadline (least

laxity), to be added to the end of the partial, feasible schedule. Given n jobs to be scheduled,

sorting by deadline (laxity) is necessary. Thus the complexity of earliest deadline (least laxity)

algorithm is O(nlogn). Given a single task to be added to the schedule, one check is sufficient to

decide whether the time and resource constraints of the new task are satisfied.

The sorted earliest deadline and the sorted least laxity algorithms involve an additional sort-

ing of the n tasks on the arrival times. Hence, their complexities are also O(nlogn). In addition,

given a single task to be added to the schedule, one check is sufficient to decide whether the time

and resource constraints of the new task are satisfied.

The compress and insert algorithm involves selection of a random task to be inserted in the

partial, feasible schedule. Given a single task to be inserted in the schedule, in the worst case, if

there are k tasks already scheduled, k compress operations, k expand operations and k+i check

operations need to be performed. For n tasks, the complexity is therefore O(n 2).

The complexity of the algorithm compress and insert + deadline is also equal to O(n 2),

since an additional nlogn sort is the only additional requirement. The same is true for the algo-

rithm compress and insert + laxity.

The Umass algorithm uses a set of heuristics to select the best task to be added to the end

of a partial, feasible schedule. To select this task, all the tasks that remain to be scheduled are

examined. As such, with k tasks to be scheduled, k operations are needed to select the next task

to be scheduled. For n tasks, the complexity is therefore O(n 2). However, f.. ' select, ,ask,

19 0

a single check is sufficient to decide whether its time and resource constraints are satisfied.

The last two heuristics, H9 and HIO are again of complexity O(n 2), involving additional

sorts of complexity nlogn. As expected, the O(n2) algorithms perform better than the Ok(ni!ogn)

algorithms, and among the 0(n 2) algorithms, H9 and H1O exhibit the best performance.

7. Conclusions 0

A major problem in finding optimal and cost-effective real-time scheduling algorithms is that

resources are committed to the tasks that are scheduled first. The -rategies typically employed

in the past have attempted to minimize this problem by a judicioub beiection of the U"Sks to be •

scheduled (i.e., added to the end of the partial, feasible schedule). Thus, the major issue

addressed is the selection of a task that can be scheduled next. Once a task is scheduled, its

claim on the resources allocated are fixed forever. Notice also that when a task is scheduled, cer-

t, ai rewouices in the system could be constrained to be idle.

The approach presented in this paper tries to separate the scheduling problem into two

parts: 1) Selection of the next task to be scheduled, given a set of tasks and 2) placement of the

selected task into a feasible schedule. The problem of committing resources to tasks scheduled

early still exists, in that the partial order of the tasks already scheduled remains the same after a

new task is included in the schedule. However, the tasks are allowed to move within a window of

time which is delimited on one hand by their resource and time constraints and on the other hand

by the partial order of the tasks already scheduled. To incorporate this added flexibility, we pay

a price in that the complexity of the algorithm is O(n 2).

The performance of the proposed algorithms, 119 and 1110, are superior to all the algorithms

considered. The average success percentage of H9, over all the sets of experiments, is 95% while

that of HIO is 93%. The same algorithms can be used for building a schedule from scratch or for

extending a partial, feasible schedule.

Four problems can be identified for future work. First, one could implement the algorithm

for handling both periodic jobs and jobs with precedence constraints, Second, one could investi-

JAL

20

gate preempt:-e alternatives for scheduling. Third, one could account for the computation time

for scheduling and guaranteeing tasks in the system. Finally, since interrupts cannot be avoided

in any operating system, one could investigate strategies that account for the time to service

interrupts in the scheduling of resources.

References

[1] Cheng, S., J. A. Stankovic, K. Ramamritham, "Dynamic Scheduling of Groups of Tasks
with Precedence Constraints in Distributed Hard Real-Time Systems," Proc. IEEE
Real-Time Syt. Symp., Dec.1986.

[21 Efe, K., "Heuristic Models of Task assignment scheduling in Distributed Systems," IEEE
Computer, June 1982. 0

[3] Garey, M.R., and D. S. Johnson, "Scheduling Tasks with Nonuniform Deadlines on Two
Processors," JACM, Vol. 23, 1976.

[4] Gonzalez, C., K. Y. Jo, "Scheduling with Deadline Requirements," Proc. of 1985 ACM
annual conf'r:'.ce (Denver, Colorado), Oct. 1985.

[5] Leinbaugh, D.W. and M. R. Yemini, "Guaranteed Response Times in a Distributed Hard
Real-Time Environment," Proc. Real-Time Systems Symp., 1982.

[6] Leinbaugh, D., "Guaranteed Response Time In a Hard-Real-Time Environment," IEEE.%

Trans. Soft. Eng., Vol. SE-6, No.1, Jan. 1980. %

[7] Lehoczky, J., L. Sha, J. Strosnider, "Enchanced Aperiodic Responsiveness in Hard Real-
Time Environments," Proc. IEEE Real-Time Syst. Symp., Doe.. 1987.

[8) Liu, C. L. and J. W. Layland, "Scheduling Algorithms for Multiprogramming in 1 Hard
Real-Time Environment," JACM, Vol. 20, No. 1, 1973.- ,,]'

[9] Ma, R. P., E. Lee, and M. Tsuchiya, "A Task Allocation Model for Distributed Com-
puter Systems," IEEE Transactions on Computers," Vol. C-81, No. 1, 1982.

[10] Mok, A.K., and Dertouzos, "Multiprocessor Scheduling in a Hard Real-Time Environ-
ment," Proc. Seventh Texas Conf. Comp. Syst., 1978.

[11] Mok, A., "Fundamental Design Problems for the Hard Real-Time Environment", MIT
Ph.D. Dissertation, May 1983.

[12] Mok, A., S. Sutanthavibul, "Modeling and Scheduling of Dataflow Real-Time Systems,"
Proc. IEEE Real-Time Syst. Symp., Dec. 1985.

[13] Mok, A., P. Amerasinghe, M. Chen, S. Sutanthavibul, K. Tantisirivat, "Synthesis of a
Real-Time Message Processing System with Data-Driven Timing Constraints," Proc.
IEEE Real-Time Syst. Symp., Dec. 1987.

[14] Ramamritham, R., and J. A. Stankovic, "Dynamic Task Scheduling in Distributed Hard
Real-Time Systems," IEEE Software, Vol. 1, No. 3, 1984.

[15] Sha, L., J. Lehoczky, R. Rajkumar, "Solutions for Some Practical Problems in Priori-
tized Preemptive Scheduling," Proc. IEEE Real-Time Syst. Syrp., Dec. 1986. 0

[16] Stankovic, J. A., K. Ramamritham, and S. Cheng, "Evaluation of a Flexible Task
Scheduling Algorithm for Distributed Hard Real-Time Systems," IEEE Transactions on
Computers, Vol. C-34, No. 12, 1985.

[17[Stoyenko, A., "A Schedulability Analyzer for Real-Time Euclid," Proc. IEEE Rcal-Tinie
Syst. Symp., Dec. 1987.

% %

21 ,
'p

1181 Zhao, W., K. Ramamritham, and J. A. Stankovic, "Scheduling Tasks with Resource 0t
Requirements in Hard Real-Time Systems," IEEE Trans. Software Eng., Vol. SE-13,"-
May 1987.

(191 Zhao, W., K. Ramamritham, and J. A. Stankovic, "Preemptive Scheduling Under Time
and Resource Constraints," IEEE Transac ion. on Computers, Vol. C-36, No. 8, Aug.
1987.

9'.

'-

I

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

N/A approved for public release;
2b. DECLASSIFICATION; DOWNGRADING SCHEDULE distribution unlimited

N/A

4- PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

UMIACS TR 88-15
CS TR i991

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

University of Maryland (If applicable) Office of Naval Research

N/A

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Department of Computer Science 800 North Quincy Street

University of Maryland Arlington, VA 22217-5000

College Park, MD 20742

Sa. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable) N00014-87-0241

c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO

11. TITLE (include Security Classification)

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 11 PAGF COUNT
Technical FROM TO 2

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19. A
r '

?,'einap n reverse if necessarv and id..ntifv bv block nimhIr)

A heuristic technique for dynamically scheduiing Lasks in a real-time system is described in
this paper. Each task is defined by a begin time, a deadline and a required comlputation tune.
The scheduling problem is to schedule every task successfully, i.e., each task should start after it,
begin time and complete its execution before its deadline. Two characteristics distinguish our
task model and heuristic technique: First, a new task to be scheduled is allowed to modify a pre-
vious, partial schedule that is already feasible. Thus, the heuristic technique can be used either to
build a feasible schedule from scratch or extend a partial, feasible schedule. Second, each task is
bounded by a window c! time defined by the begin and end times. The begin time is typically
equal to or greater than the task arrival time. The end time is typically equal to or less than the
task deadline. The additional constraint of starting a task after specified time instant is useful in
task synchronization. Comparisons with known heuristic techniques for dynamically scheduling
tasks in a real-time system are made via simulation. The results show that the proposed
approach has a higher degree of success in obtaining a feasible schedule compared to the other
approaches.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT d1. AtS)IOAL I SELURITY CLASSIFICATION

OUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0O TIC USERS UNCLASSIFIED
22a- NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Satish K. Tripathi 301-454-5165 Professor

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

Unclassi fied

- %

Sp

w W- w v w --

